Membranes for capturing carbon dioxide from the air

Technological solutions for the CO2 emission into the atmosphere should include variety of approaches as there is no one “silver bullet” solution. In this work researchers from I2CNER, Kyushu University and NanoMebrane Technologies Inc. Japan suggest using the gas separation membranes as a tool for direct air capture. When combined with advanced technologies for CO2 conversion the envisaged systems can be widely employed in carbon-recycling sustainable society. Credit: Kyushu University

Climate change caused by emissions of greenhouse gases into the atmosphere is a pressing issue for our society. Acceleration of global warming results in catastrophic heatwaves, wildfires, storms and flooding. The anthropogenic nature of climate change necessitates development of novel technological solutions in order to reverse the current CO2 trajectory.


Direct capture of the carbon dioxide (CO2) from the air (direct air capture, DAC) is one among a variety of negative emission technologies that are expected to keep global warming below 1.5 °C, as recommended by the Intergovernmental Panel for Climate Change (IPCC). Extensive deployment of the DAC technologies is needed to mitigate and remove so-called legacy carbon or historical emissions. Effective reduction of the CO2 content in the atmosphere would be achieved only by extracting huge amounts of CO2 that are comparable to that of the current global emissions. Current DAC technologies are mainly based on sorbent-based systems where CO2 is trapped in the solution or on the surface of the porous solids covered with the compounds with high CO2 affinity. These processes are currently rather expensive, although the cost is expected to go down as the technologies developed and deployed at scale.

The ability of membranes to separate carbon dioxide is well documented and its usefulness is established for industrial processes. Unfortunately, its efficiency is less than satisfactory for the practical operation of the DAC.

In a recent paper, researchers from International Institute for Carbo-Neutral Energy Research (I2CNER), Kyushu University and NanoMembrane Technologies Inc. in Japan discussed the potential of membrane-based DAC (m-DAC), by taking advantage of the state-of-the-art performance of organic polymer membranes. Based on the process simulation, they showed the targeted performance for the m-DAC is achievable with competitive energy expenses. It is shown that a mult-stage application separation process can enable the preconcentration of air CO2 (0.04%) to 40%.

This possibility and combination of the membranes with advanced CO2 conversion may lead to realistic means for opening circular CO2 economy. Based on this finding, Kyushu University team has initiated a Government-supported Moonshot Research and Development Program (Program Manager: Dr. Shigenori Fujikawa). In this program, direct CO2 capture from the atmosphere by membranes and the subsequent conversiont to valuable materials is the major development target.


New self-forming membrane to protect our environment


More information:
Shigenori Fujikawa et al, A new strategy for membrane-based direct air capture, Polymer Journal (2020). DOI: 10.1038/s41428-020-00429-z

Provided by
Kyushu University

Citation:
Membranes for capturing carbon dioxide from the air (2020, October 16)
retrieved 16 October 2020
from https://phys.org/news/2020-10-membranes-capturing-carbon-dioxide-air.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.


Speak Your Mind

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Get in Touch

350FansLike
100FollowersFollow
281FollowersFollow
150FollowersFollow

Recommend for You

Oh hi there 👋
It’s nice to meet you.

Subscribe and receive our weekly newsletter packed with awesome articles that really matters to you!

We don’t spam! Read our privacy policy for more info.

You might also like

How Can Cannabis Edibles Be The Reason For Your...

What Exactly Is Edible Cannabis? Cannabinoids are chemical components present in cannabis that, when taken,...

Can the common cold help protect you from COVID-19?

Seasonal colds are by all accounts no fun, but new research suggests the colds...