Researchers develop low-cost, drop-on-demand printing technique

Drop impact printing setup with recycling unit. Credit: Nature Communications, Microfluidic Devices and Heterogeneous Systems Lab, CeNSE

Researchers at the Center for Nano Science and Engineering (CeNSE), IISc, have developed a low-cost, drop-on-demand printing technique capable of generating a wide range of droplet sizes using a variety of inks. Apart from traditional printing, it could also potentially be useful for 3-D printing of living cells, ceramic materials, electronic circuits and machine components.


Printers used currently—from inkjet printers to bio-printers that dispense living cells—have a nozzle with a small opening to eject droplets. However, particles in the ink or a cell suspension can clog the opening, which limits the amount of particles or cells that can be loaded initially. Consequently, the thickness of the layer that can be printed is also limited.

The new technique replaces the nozzle with a mesh covered with chemically treated nanowires that repel water. When a large droplet impacts on this mesh, it bounces back. However, a small part of the liquid is ejected through the mesh pore as a jet that breaks to create a micro-scale droplet, which is then printed onto a surface.

Because of the short contact time of the impacting droplet with the mesh (about 10 ms), the particles in the ink do not get a chance to clog the mesh pore, the researchers say. This allowed them to load the ink with larger quantities of nanoparticles, enabling printing of very thick lines in a single cycle. The mesh can also be easily cleaned and reused.

Video explaining motivation and applications

“The mesh costs only a small fraction of the nozzles that it replaces. This significantly reduces the operational cost when compared to conventional printing techniques,” says Prosenjit Sen, Associate Professor in CeNSE and senior author of the study published in Nature Communications.

Sen and his lab have been working on developing nanostructured surfaces that can repel water. When large droplets hit such nanostructured meshes at high speeds, jets are ejected. While studying this phenomenon, the researchers found that the velocity of the ejected jet was surprisingly higher than the velocity of the impacting droplet.

“This was the first hint that some mechanism was playing a role in focusing the kinetic energy,” says Chandantaru Dey Modak, first author and Ph.D. student at CeNSE. “At this point, we started asking the following questions: What is this focusing mechanism? Can this mechanism be exploited to reliably generate single microscale droplets?”

The team captured high-speed videos (50,000 to 80,000 frames per second) of these impacting droplets, and found that an air cavity was being formed at the droplet center. During the recoil phase of the impact, this cavity collapsed, focusing all the kinetic energy into a single point, resulting in the generation of individual droplets. No “satellite” droplets ‒ secondary droplets that result in unwanted scatter ‒ were generated. The size of the droplets ejected could also be tweaked by adjusting the pore size of the mesh.

The researchers were able to demonstrate the use of this technique for various applications. “Using drop impact printing, we could print 3-D pillars of different sizes, an electronic circuit for semiconductor device applications, and bio-based droplet arrays for cell culture,” says Modak. “The capability to print a wide range of droplet sizes while using different kinds of inks for different applications makes this technique unique.”


Coffee stains inspire optimal printing technique for electronics


More information:
Chandantaru Dey Modak et al. Drop impact printing, Nature Communications (2020). DOI: 10.1038/s41467-020-18103-6

Citation:
Researchers develop low-cost, drop-on-demand printing technique (2020, September 3)
retrieved 3 September 2020
from https://phys.org/news/2020-09-low-cost-drop-on-demand-technique.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.


Speak Your Mind

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Get in Touch

350FansLike
100FollowersFollow
281FollowersFollow
150FollowersFollow

Recommend for You

Oh hi there 👋
It’s nice to meet you.

Subscribe and receive our weekly newsletter packed with awesome articles that really matters to you!

We don’t spam! Read our privacy policy for more info.

You might also like