Understanding the role of underground connections in hydrology

Credit: CC0 Public Domain

Topographically sketched catchment areas are a spatial unit based on the shapes of the earth’s surface. They show how human activities and climate change influence the available quantities of water. Knowledge of these units is fundamental to sustainable water management. However, due to underground connections, some catchment areas accumulate water from areas beyond their topographic boundaries, while others are effectively much smaller than their surface topography would suggest. Currently, most hydrological modeling strategies do not take these groundwater connections into account, but assume that the catchments are independent of their surroundings. For this reason, Dr. Yan Liu and Assistant Professor Dr. Andreas Hartmann from the Chair of Hydrological Modeling and Water Resources at the University of Freiburg, together with a team of researchers from the University of Bristol in England and Princeton University in the US, have introduced the Effective Catchment Index (ECI). Using this new metric, they were able to determine how topographic and actual catchment areas differ when analyzing a global data set. The team recently published the results in the journal Environmental Research Letters.

Using the ECI, the team led by Liu and Hartmann was able to demonstrate that the assumption of a closed water balance, i.e. that the level of a river changes only through precipitation and evaporation from its topographic area, for example, does not apply to a considerable number of catchments around the world. Every third catchment studied has an effective catchment area that is even greater than twice or less than half its topographical area. The scientists recognized that these areas influence or are influenced outside their topographical boundaries by water management activities such as pumping groundwater and, for example, deforestation or reforestation.

With their analysis, the researchers show that the ECI they have redefined is suitable for investigating how drought can spread across topographical boundaries as a result of water exchange. It can also be used in the analysis of the effects of climate and land use changes on cross-boundary water exchange. “This is how we have seen where we need to further investigate underground networks across topographical boundaries in order to support sustainable water management,” says Hartmann.


Global database for Karst spring discharges


More information:
Yan Liu et al, What is the hydrologically effective area of a catchment?, Environmental Research Letters (2020). DOI: 10.1088/1748-9326/aba7e5

Provided by
University of Freiburg

Citation:
Understanding the role of underground connections in hydrology (2020, September 22)
retrieved 22 September 2020
from https://phys.org/news/2020-09-role-underground-hydrology.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.


Speak Your Mind

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Get in Touch

350FansLike
100FollowersFollow
281FollowersFollow
150FollowersFollow

Recommend for You

Oh hi there 👋
It’s nice to meet you.

Subscribe and receive our weekly newsletter packed with awesome articles that really matters to you!

We don’t spam! Read our privacy policy for more info.

You might also like