AI technology can predict vanadium flow battery performance and cost

Cost, performance prediction and optimization of a vanadium flow battery using machine learning. Credit: Li Tianyu.

Vanadium flow batteries (VFBs) are promising for stationary large-scale energy storage due to their high safety, long cycle life, and high efficiency.

The cost of a VFB system mainly depends on the VFB stack, electrolyte, and control system. Developing a VFB stack from lab to industrial scale can take years of experiments due to complex factors, from key materials to battery architecture.

Novel methods to accurately predict the performance and cost of a VFB stack and further system are needed in order to accelerate the commercialization of VFBs.

Recently, a research team led by Prof. Li Xianfeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences proposed a machine learning-based strategy to predict and optimize the performance and cost of VFBs.

“We use AI technology to improve efficiency, reduce research time, and provide important guidance for the research and development of VFBs” said Prof. Li. “It may accelerate the commercialization of VFBs.”

This work was published in Energy & Environmental Science on Sept. 22.

The proposed strategy takes operating current density as the main feature, and the material and structure of the stack as auxiliary features.

This machine learning model can predict the voltage efficiency, energy efficiency, and electrolyte utilization ratio of the VFB stack, as well as the power and energy cost of the VFB system with high accuracy.

In addition, a future R&D direction for the VFB stack was proposed based on model coefficients of machine learning, i.e., developing high-power density VFB stacks under conditions of higher voltage efficiency and higher electrolyte utilization ratio.

This work not only has great significance for the R&D of VFB stacks, but also highlights the prospects for combining machine learning and experiments for optimizing and predicting the dynamic behavior of complex systems.


Scientists develop low-cost, high power density vanadium flow battery stack


More information:
Tianyu Li et al, Cost, Performance Prediction and Optimization on Vanadium Flow Battery by Machine-Learning, Energy & Environmental Science (2020). DOI: 10.1039/D0EE02543G

Citation:
AI technology can predict vanadium flow battery performance and cost (2020, September 28)
retrieved 28 September 2020
from https://techxplore.com/news/2020-09-ai-technology-vanadium-battery.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.


Speak Your Mind

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Get in Touch

350FansLike
100FollowersFollow
281FollowersFollow
150FollowersFollow

Recommend for You

Oh hi there 👋
It’s nice to meet you.

Subscribe and receive our weekly newsletter packed with awesome articles that really matters to you!

We don’t spam! Read our privacy policy for more info.

You might also like

Tencent teams up with Chinese automaker Geely on driverless...

Logo of Chinese automaker Geely Auto.Zhang Peng | Getty ImagesChina's Tencent has teamed...

Mast Reforestation is using drones, nurseries and carbon offsets...

Seattle startup Mast (formerly DroneSeed) takes a high-tech approach to reforestation.Mast ReforestationLast year, the...

Google warns pandemic could hinder its ability to ‘maintain...

Alphabet CEO Sundar Pichai gestures during a session at the World Economic Forum (WEF)...